The Global Trigger List

Bill Lee Florida State University

Shifter Tutorial 1 June, 2004

Brief Outline

- Construction of a trigger list
 - Many of these slides are thanks to Elizabeth Gallas
- Trigger Monitor tools

Trigger Fundamentals

- Effect of the 'Trigger' system
 - given over a million opportunities for collisions ('events' per second)
 - choose <50 to record for later analysis
- Selecting events:
 - Some fraction of these events are not 'rare' (but still useful):
 - Low energy jet production via QCD
 - Measure luminosity ...
 - Detector monitoring ...
 - The study of rare processes and the discovery of unknown phenomena require maximal 'exposure' to the beam
 - Need well designed triggers that can remain unprescaled at the highest luminosity
- The trigger system is designed to
 - Record the wide variety of processes that D0 physicists are interested in.
 - It does this using a 'trigger menu' (or Trigger List) which is complex by necessity

The D0 Trigger system – L1/L2

1 June, 2004

Bill Lee / Shifter Tutorial

Trigger System Design

- Fast, complex, high rate,...,multi-level
 - Level 1 electronics and firmware
 - reduce 1 MHz to 10 kHz (presently 1600 Hz) by looking for interesting signatures (high Pt tracks, high Et energy deposition)
 - Level 2 firmware and software
 - 10 kHz to 1kHz (presently 800 Hz) by refining L1 objects, match objects found by different detectors
 - Level 3 software
 - 1kHz to 50 Hz execute streamlined versions of offline reconstruction programs to select events.
- Programmable!
 - through the 'trigger configuration' generated from Trigger Lists stored in the Trigger Database
 - and online resource allocation by COOR

Trigger Database Purpose

• Generate:

- precise programming for trigger configuration
 - ONLINE
 - SIMULATION
- The configuration format: 'xml'
 - Extensible Markup Language (XML) universal format for structured docs and data on the web
 - The trigger 'xml' does not contain all the information stored in the trigger database, specifically wrt versioning, how one trigger list relates to another triggerlist, or descriptions.

• Store

- all global Trigger Lists used online in Run 2
- Bench march Trigger Lists for simulation

• Report

- trigger configuration settings
 - for use by offline analysis programs
 - Et thresholds, eta ranges ...
 - to the collaboration (web), with some documentation features
 - not intended as a substitute for trigger subsystem documentation!

Trigger Database Implementation

• <u>Design</u>:

- Three levels of decision making
 - Level 1 hardware, firmware
 - Level 2 firmware, software
 - Level 3 software
- complexity is a reflection of the complexity of the trigger
- symmetry/commonality is taken advantage of wherever possible
- seemingly cryptic nomenclature reflective of trigger programming.

• Implementation:

IN USE for all global trigger configurations since December 2001

• **Documentation**:

- Specifications from
 - COOR document (Scott Snyder)
 - D0 Trigger/Online Groups
- Trigger Database
 - see Entry Interface 'help' button

A Trigger is a Logical Condition

- identified by a **trigger name**
- with a set of criteria called a Script at Level 1, Level 2, and Level 3
 - > Each of which is satisfied if all of its logical conditions or **TERMS** is satisfied

• satisfied (true) for an event if all 3 Level Scripts are true for that event

A Trigger List

- identified by Triggerlist Name/Version
- contains one or more triggers
- like a tree with Triggers as branches
 - if any trigger is satisfied, the event is recorded and the trigger bit for that trigger name is set to TRUE in the event record

Trigger Database Design

NAME/VERSION scheme is repeated throughout the design. The name is intended to reflect the conditions in that definition

1 June, 2004

Bill Lee / Shifter Tutorial

Trigger Nomenclature – L1

- NEOTYPE an L1 detector class
 - Group NEOTERMS which shares common download mechanisms
 - Examples: ctt, fpd, fps, muo, emcount, jetcount ... specterm
- NEOTERM the "And/Or terms"
 - For any event: result is TRUE or FALSE
 - Map into the L1 And/Or Framework
 - Combine one/more to form a Level 1 Script decision
 - Examples: TTK(1,1.5), Afastz ...
- L1 Script decision
 - Logical AND of one/more NEOTERMS

Level 1 Trigger Systems

- C -- Calorimeter -- based on Calorimeter "trigger towers"
 - emcount / CEM(n,Et[,Hv]) Cal EM TTower
 - jetcount / CJT(n,Et) Cal Jet (tot) TTower
 - misspt / CME(MEt) near future
- M -- MUON based on Muon system scintillator, PDT,MDT and CFT
 - muo / MUO(n,Pt,eta,scint,wire,option)

T -- CFT/CPS

- ctt / TTK(n,p) CFT track
- ctt / TIS(n,p) -- Isolated track
- ctt / TIQ(n,p,q) -- Isolated tracks in a quadrant
- ctt / TIL Isolated track(s) with low home-sector occupancy.

A -- Special (L1 Framework terms)

- constructed from signals from: the Accelerator, Luminosity
 Monitor, Trigger Timing and Control
 - Afastz, ALiveBX, ASkip0 ...

L1 Muon Trigger

L1 CTT Trigger

Audience Participation @ L1!

- Decode L1 neoterm name: CEM(1,5)
 - Starts with a "C" -- Calorimeter
 - CEM (Sum Electromagnetic Trigger Towers)
 - CEM(n,Et[,Hv])
 - N = 1 Requires ONE EM TT with
 - Et > 5 GeV and
 - No Hv NO Hadronic veto
- Decode L1 neoterm name: mu2pt3wtlx
 - Starts with a "m" Muon / (maybe CTT)
 - MUO(n,Pt,eta,scint,wire,option)
 - N = 2 DIMUON
 - Pt3 requires pt > 3rd CTT threshold
 - Region = 'w' WIDE region (CFT coverage)
 - Scint = 't' TIGHT req. on muon scintillator
 - Wire = '1' LOOSE req. on muon PDT/MDT's
 - Option = 'x' no additional options
- Decode L1 Script Name (seen in DAQmonitor): TTK(2,3.)TTK(1,5.)_CEM(2,3)CEM(1,6)_ncu

L1: Whaaaaat's that?

- '_ncu' started appearing in L1 Script names for global_CMT-11.00
 - Cal_unsuppressed / 1
 - New trigger in it's own exposure group
 - Read out all Calorimeter cells unsuppressed
 - All other triggers were changed to veto on that L1 condition
- Other 'short names' used in L1 Scripts:
 - '_fz' requires Afastz
 - '_nfz' veto on Afastz

Trigger Nomenclature – L2, L3

OBJECT

- Has a distinct name
 - At Level 2: EM, JET ... or at Level 3: L3TEle
- Has a distinct set of parameter definitions
 - Name, type, default, min, max, description
- Has a distinct type
 - TOOL or FILTER
 - Basis for all TOOL and FILTER TERMs (below)
- Associated with one/more L2/L3 'releases'

TOOL TERM

- An instance of a TOOL type OBJECT giving values to each parameter
 - Aside: At L2, TOOLS depend on getting input from the L2 preprocessors in the Run
- Can depend on other tools
 - Example: Jet finding TOOL uses clusters from a Cal Cell Clustering TOOL which uses Cell Energies unpacked by a Cal Unpacking TOOL
- Finds candidates for other tools, filters

Trigger Nomenclature – L2, L3 (cont)

FILTER TERM

- An instance of a FILTER type OBJECT giving values to each parameter
- Can depend on other filters
- May find candidates for higher level filters
- Makes cuts on candidates
- For any event: result is TRUE or FALSE
- L2,L3 Script decision
 - Logical AND of one/more FILTER TERMS

Trigger List History

Link off of Triggermeister page

Report: global_CalMuon-12.37 (1)

Report: global_CalMuon-12.37 (2)

1 June, 2004

Bill Lee / Shifter Tutorial

Report: global_CalMuon-12.37 (3)

1 June, 2004

Two Triggers

- zero_bias in every physics Trigger List
 - Level 1 only trigger
 - Requiring NEOTERM ALiveBX
 - An accelerator based trigger
 - true on each of the 36 beam crossings of a single turn of the accelerator
 - About 1.7 M times per second
 - Used to cross check the luminosity measurement and trigger system functionality
 - Really is unbiased
- min_bias ('minimum biased')
 - Level 1 only trigger
 - requiring NEOTERM 'Afastz'
 - (and ALiveBX and ASkip0) every trigger
 - Based on Luminosity monitor:
 - North, South scintillator array on beamline
 - Requires N and S pulse heights above threshold in timing coincidence
 - Gives a quick measure of the z vertex
 - Necessary to measure luminosity
 - Is undoubtedly biased physics-wise

Example:

Trigger MWTL_M3_IMM_2T / 2

Example: Trigger MWTL_M3_IMM_2T / 2

L3: Whaaaaat's that?

Mark and Pass (special filter)

- A Level 3 Filter designed to create samples for L3 trigger analysis (not for physics analysis)
- Has one argument: pass_1_of_n
- Action: puts 1 of every n events passing through it into the inclusive 'monitor' stream
- Events written to the monitor stream are not intended for physics analysis
 - No luminosity accounting for monitor stream
 - Events recorded exclusively to the monitor stream events
 - do not get registered in the SAM event catalog
 - Cannot use 'pick events' utility to get them
- Level 3 scripts using this filter have mp* in their name, where pass_1_of_n = *

Other shortnames:

- 'ps*' -- for L3FPrescale, prescale = *
- 'pf*' -- for L3FPassFraction, fraction = *

Trigger List Rules ...

Examples of rules for valid Triggers, Lists...

- all Trigger Names must
 - be unique (in that Trigger List)
 - $len(TriggerName) \le 16$ (thumbnail)
 - cannot contain special characters
- cannot use more than 4 Level1 Calorimeter EM or JET thresholds
- cannot use more than 32 L1 muon terms from the set of 256 valid terms
- cannot use more than 128 unique L1L2 bits
- L3 filters and tools mustn't use different versions of tools of the same name
- L3 filters and tools may call other tools, but tools may not call filters (not true at L2)
- L3 tool names must conform to SR parsing rules

- ...

Many rules checked upon db entry, but the 'xml' generator checks many features as well ...

Monitoring Tools

DAQ Rates (1)

1 June, 2004

Bill Lee / Shifter Tutorial

DAQ Rates (2)

1 June, 2004

Bill Lee / Shifter Tutorial

DAQ monitor - Spec trigger

vervi	ew L	1 Trigger	Col	Router	Da	taLogger	SI	DAQ	Dis	tributor	DSM	L3 Filter			
_1 Trigger Monitor Tue Jun 1 11:31:00 2									2004 Display Mode natural i				unit		
Spec Trigger Trig Details Exp				Exp Gro	p Group Global L1 Qu			Qualif	ualifiers And/Or Term			Geo Sector	Geo Sector Strip Chart		
Specif	fic Trigg	ger Display	į												
Trig#		Trig Name	•		Fire	d (Hz)		And	Or F	Fired (Hz)		Exposed (Hz)		Pre	
0		Afas	tz_nc	u		0.	962			881801.8	07		1.154		
1	ALiveBX_ncu			u	0.577			1712633.593			93	0.577			
2		L1Mu_download			0.0			0.0			0.0	0.0			
3		L1CTT_do	wnloa	ď			0.0			(0.0		0.0		
4		CEM(1,	3)_nc	u			0.0			19836.9	59		19.43		
5		CEM(1,	6)_nc	u			0.0			1221.9	91	61	0.984		
6		CEM(1,1	1)_nc	u			0.0			113.8	88	182	9.331		
7		CEM(1,	9)_nc	u			0.0			251.2	47	80	3.374		
8	ΓK(2,3	.)_CEM(2,	3)_nc	u			0.0			811.4	54	9	7.151		
9	(CEM(1,11)	_ncu^	2		110.	233			113.8	88	165693	8.361		
10		CEM(2,	6)_nc	u		80.	799			84.8	39	165693	8.361		
11	CEM(2	,3)CEM(1,	9)_nc	u		139.	475			143.7	07	165693	8.361		
12	K(1,10	.)_CEM(1,	9)_nc	u		51.	365			51.5	58	165693	8.361		
13	CEM(2	,3)CEM(1,	6)_nc	u		96.	382			98.3	06	165693	8.361		
14	S(1,10	.)_CEM(1,	6)_nc	u		45.	786			46.1	71	165693	8.361		
15	CEM(2	,3)CEM(1,	6)_nc	u		201.	998			207.1	92	165693	8.361		
16	M(2,3)	CEM(1,6)	_ncu^	2		201.	998			207.1	92	165693	8.361		
17	TIS(1,5	.)_CEM(1,	6)_nc	u		65.	409			67.5	25	165693	8.361	7	

DAQ Monitor – L3 Filter

LmTrigger (1)

1 June, 2004

Bill Lee / Shifter Tutorial

LmTrigger (2)

1 June, 2004

Bill Lee / Shifter Tutorial

L2 Monitor Guis

1 June, 2004

Bill Lee / Shifter Tutorial

Prescale file

1 June, 2004

Bill Lee / Shifter Tutorial

That's it!